Linear Algebra, Winter 2022 List 1

Algebra and trig review, vector operations

1. Which of the following are true for **all** real values of the variables?

(a)
$$2x = x + x$$
 True
(b) $2(x + y) = 2x + y$ False
(c) $(x - y)^2 = x^2 - 2xy + y^2$ True
(d) $(6 + a)/2 = 3 + a/2$ True
(e) $-(y + 2) = -y + 2$ False
(f) $-(a + b)^2 = (-a + b)^2$ False
(g) $x^3 + 3x = x + x$ False
(h) $k^{-2} = 1/k^2$ True
(i) $k^{-2} = -x/k$ False

- (i) $k^{-2} = -\sqrt{k}$ False
- (j) $x^{a+2} = x^a \times x^2$ True
- 2. Compute the following values:
 - (a) $\cos(0)$ 1
 - (b) $\sin(0)$ **0**
 - (c) $\cos(30^{\circ}) \sqrt{3}/2$
 - (d) $\cos(45^{\circ})$ $1/\sqrt{2}$ or $\sqrt{2}/2$
 - (e) $\cos(60^{\circ})$ 1/2
 - (f) $\cos(\pi/3)$ 1/2 (same as previous)
 - (g) $\cos(\pi/2)$ 0
 - (h) $\sin(\pi/2)$ 1
 - (i) $\sin(180^\circ)$ 0
 - (j) $\sin(4\pi/3) -\sqrt{3}/2$
 - (k) $\operatorname{arccos}(\frac{1}{\sqrt{2}}) \pi/4$ or 45°
 - (l) $\operatorname{arccos}(\frac{\sqrt{3}}{2}) \pi/6$ or 30°
- 3. Find one value of θ for which both $-\sqrt{5} = \sqrt{20}\cos(\theta)$ and $\sqrt{15} = \sqrt{20}\sin(\theta)$. $\boxed{\frac{2\pi}{3}}$ or $\frac{2\pi}{3} + 2\pi n$ for any integer n
- 4. Simplify $(2e^7)^{10}$. 1024 e^{70}

In 2D, the zero vector is $\overline{0} = [0,0]$, and the standard basis vectors are $\hat{i} = [1,0]$ and $\hat{j} = [0,1]$. In 3D, the zero vector is $\overline{0} = [0,0,0]$, and the standard basis vectors are $\hat{i} = [1,0,0]$ and $\hat{j} = [0,1,0]$ and $\hat{k} = [0,0,1]$. In any dimension, magnitude (or length): $|[a_1,...,a_n]| = \sqrt{a_1^2 + a_2^2 + \cdots + a_n^2}$ scalar multiplication: $s[a_1,...,a_n] = [sa_1,...,sa_n]$ vector addition: $[a_1,...,a_n] + [b_1,...,b_n] = [a_1+b_1,...,a_n+b_n]$ vector subtraction: $[a_1,...,a_n] - [b_1,...,b_n] = [a_1-b_1,...,a_n-b_n]$

- 5. Calculate each of the following:
 - (a) [3,2] + [7,1] [10,3] or $\begin{bmatrix} 10\\3 \end{bmatrix}$ or $10\hat{i} + 3\hat{j}$ (b) $\langle 3,2 \rangle + \langle 7,1 \rangle$ same as part (a) (c) $5[-4,3] = \begin{bmatrix} -20,15 \end{bmatrix}$ (d) $8 \begin{pmatrix} 3\\2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 7\\1 \end{pmatrix} = \begin{pmatrix} 24\\16 \end{pmatrix} + \begin{pmatrix} 3.5\\0.5 \end{pmatrix} = \begin{pmatrix} 27.5\\16.5 \end{pmatrix}$ or $\begin{bmatrix} 55/2\\33/2 \end{pmatrix}$ (e) $\frac{1}{20}[3,2] = \begin{bmatrix} \frac{3}{20}, \frac{1}{10} \end{bmatrix}$ (f) $9[1,0] + 2[0,1] = \begin{bmatrix} 9,2 \end{bmatrix}$ (g) $9\hat{i} + 2\hat{j}$ (in 2D) = $\begin{bmatrix} 9,2 \end{bmatrix}$ (h) $6\hat{i} + \hat{j} - 2\hat{k} = \begin{bmatrix} 6,1,-2 \end{bmatrix}$ (i) $6\hat{j} - 4(\hat{j} - \hat{k}) = \begin{bmatrix} 0,2,4 \end{bmatrix}$
- 6. **Draw** the following vectors as arrows all on the same plane (one drawing, not three drawings):
 - (a) the vector $2\hat{i} + \hat{j}$ with its start at (0, 0).
 - (b) the vector $2\hat{i} + \hat{j}$ with its start at (-3, 0).
 - (c) the vector $2\hat{i} + \hat{j}$ with its start at (-1, -1).

7. Draw the following vectors as arrows all on the same plane (one drawing, not four drawings):

- (a) the vector [2, 1] with its start at (0, 0).
- (b) the vector 4[2, 1] with its start at (0, 0).
- (c) the vector 1.5[2, 1] with its start at (0, 0).
- (d) the vector (-1)[2,1] with its start at (0,0).

8. Which of the following are scalar multiples of [4, 2, -6]?

(a)
$$\begin{pmatrix} 20\\ 10\\ -60 \end{pmatrix}$$
 No
(b) $[-12, -6, 18]$ Yes
(c) $[0, 0, 0]$ Yes
(d) $\begin{pmatrix} 0.4\\ 0.2\\ -0.6 \end{pmatrix}$ Yes
(e) $\begin{pmatrix} \sqrt{32}\\ \sqrt{8}\\ -\sqrt{72} \end{pmatrix}$ Yes
(f) $[8, 4, -10]$ No

9. Draw, on one picture, the vectors $7\hat{j}$ and $4\hat{i} - 4\hat{j}$ as arrows starting at (0,0). What is the angle between these two vectors?

- 10. Let P be the point (5,2) and let Q be the point (1,9). Describe the vector $\begin{bmatrix} 5\\2 \end{bmatrix} \begin{bmatrix} 1\\9 \end{bmatrix}$ in words, without doing any calculations. An arrow from Q to P
- 11. Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be as in the image below.

Write a true equation of the form $_ + _ = _$ using these vectors. $\vec{a} + \vec{c} = \vec{b}$ or $\vec{c} + \vec{a} = \vec{b}$.

- 12. Write two true equations of the form $_ _ = _$ using vectors from Task 11. $\vec{b} - \vec{a} = \vec{c}$ and $\vec{b} - \vec{c} = \vec{a}$.
- 13. Calculate the following vectors or scalars:

(a)
$$|4\hat{\imath} - 4\hat{\jmath}| = \sqrt{4^2 + (-4)^2} = \sqrt{16 + 16} = \sqrt{32} \text{ or } 4\sqrt{2}$$
 (b) $|[0,7]|$
= 7 (c) $\frac{[3,2]}{|[3,2]|} = \boxed{\left[\frac{3}{\sqrt{13}}, \frac{2}{\sqrt{13}}\right]}$ (d) $\left|\frac{[3,2]}{|[3,2]|}\right| = \boxed{1}$

- 14. Calculate each of the following. Each answer will be either a scalar formula or a vector formula involving t.
 - (a) $5\binom{3}{2} + t\binom{7}{1} = \binom{15+7t}{10+t}$ (b) $t + \left| \begin{bmatrix} 3\\2 \end{bmatrix} \right| = \underbrace{t + \sqrt{13}}$ (c) $\left| t[3,2] \right| = \underbrace{t\sqrt{13}}$ (d) $\left| [1+t,1-t] \right|^2 = \left(\sqrt{(1+t)^2 + (1-t)^2} \right)^2 = (1+t)^2 + (1-t)^2 \text{ or } \underbrace{2+2t^2}$
- 15. A parallelogram has the vector $\vec{a} = [5, 2]$ along one edge and $\vec{b} = [3, 8]$ along another edge. Compute the lengths of the two diagonals of the parallelogram.

16. Give a vector that is parallel to $\vec{v} = [8, -1, 4]$ but has length 1.

$$\frac{[8,-1,4]}{\left|[8,-1,4]\right|} = \frac{[8,1,4]}{\sqrt{81}} = \left\lfloor \left[\frac{8}{9},\frac{-1}{9},\frac{4}{9}\right]\right\rfloor$$

The **dot product** (also called **scalar product**) of \vec{u} and \vec{v} is written $\vec{u} \cdot \vec{v}$ and can be calculated as either

$$\overline{u} \cdot \overline{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

 $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos(\text{angle between } \vec{u} \text{ and } \vec{v}).$

Two vectors are called **orthogonal** if their dot product is 0.

17. Calculate
$$\binom{5}{7} \cdot \binom{-8}{1}$$
. $5(-8) + 7(1) = -40 + 7 = -33$

18. Calculate $(4\hat{\imath} - 4\hat{\jmath}) \cdot (7\hat{\jmath})$ in two ways:

or

(a) by using (4)(0) + (-4)(7). 0 - 28 = -28

(b) by using $(4\sqrt{2})(7)\cos(135^\circ)$. (See 13(a), 13(b), and 9.) $(4\sqrt{2})(7)(\frac{-1}{\sqrt{2}}) = -28$

19. Find the angle between
$$\begin{pmatrix} -3\\\sqrt{3} \end{pmatrix}$$
 and $\begin{pmatrix} \sqrt{3}\\1 \end{pmatrix}$. $\frac{2}{3}\pi = 120^{\circ}$

20. Let \vec{u}, \vec{v} , and \vec{w} be as in the image below.

21. For each formula below, state whether it represents a scalar (number), a vector, or "nonsense" (meaning it is not a legal operation; for example, $\vec{v}+5$ is nonsense.

(a) $\vec{a} + \vec{b}$ vector	(i) $\vec{c} + s\vec{b}$ vector	(p) $\vec{w} \cdot [s, t]$ scalar
(b) $\vec{u} \cdot \vec{v}$ scalar	(j) $t(\vec{a} + \vec{b}) - \vec{c}$ vector	(q) $\left \vec{u} \right $ scalar
(c) $\vec{a}\vec{b}$ nonsense	(k) $(\vec{a} \cdot \vec{b})\vec{c}$ vector	(r) $\left \left[9, 2, \frac{1}{2}\right] \right $ scalar
(d) $t\vec{a}$ vector	(l) $\vec{0} - \vec{a}$ vector	(s) $ \vec{w} \vec{v}$ vector
(e) $t + \vec{v}$ nonsense	(m) $\vec{0} \cdot \vec{w}$ scalar	(t) $\left \vec{a} \right + (\vec{b} \cdot \vec{c})$ scalar
(f) $(t+s)\vec{u}$ vector	(n) $\begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 8 \end{pmatrix}$ scalar	(u) $ \vec{a} (\vec{b}\cdot\vec{c})$ scalar
(g) \vec{n}/s vector	(ii) $\binom{2}{2} \cdot \binom{8}{8}$	(v) $(\vec{a})^2$ nonsense
(h) $\vec{a} - s$ nonsense	(o) $[4,2] \cdot [s,t]$ scalar	(w) $\left \vec{a} \right ^2$ scalar

22. State whether each pair of vectors below is parallel, perpendicular, or neither.

(a)
$$\binom{5}{2}$$
 and $\binom{-2}{7}$ neither
(b) $\binom{5}{2}$ and $\binom{1}{0.4}$ parallel
(c) $2\hat{\imath} - 8\hat{\jmath}$ and $-8\hat{\imath} + 2\hat{\jmath}$ neither
(d) $\binom{10}{-6}_{3}$ and $\binom{0}{2}_{4}$ perpendicular
(e) $9\hat{\imath} + 11\hat{\jmath} - 29\hat{k}$ and $2\hat{\imath} + j + \hat{k}$ perpendicular
(f) $32\hat{\imath} + 180\hat{\jmath}$ and $32\hat{\imath} + 7\hat{k}$ neither

23. Give an example of a vector that is perpendicular to $\vec{v} = \hat{i} + 9\hat{j} + 4\hat{k}$. There are many, many correct answers. One correct answer is [4, 0, -1]. 24. Knowing that

 $\cos(19.5^{\circ}) \approx \frac{33}{35}, \quad \cos(25.2^{\circ}) \approx \frac{19}{21}, \quad \cos(31^{\circ}) \approx \frac{6}{7}, \quad \cos(62.96^{\circ}) \approx \frac{15}{33},$ find the acute angle between [6, 3, 6] and [6, 9, 18].

We know

$$[6,3,6] \cdot [6,9,18] = 6(6) + 3(9) + 6(18) = 171$$

and also

 $[6,3,6] \cdot [6,9,18] = |[6,3,6]| |[6,9,18]| \cos \theta = (9)(21) \cos \theta = 189 \cos \theta,$ so it must be that

$$171 = 189\cos\theta \qquad \Rightarrow \qquad \cos\theta = \frac{171}{189} = \frac{19}{21}$$

and therefore $\theta = 25.2^{\circ}$.

A linear combination of a collection of vectors is a sum (+) of scalar multiples of those vectors. (A linear combination of one vector is simply a scalar multiple of that one vector.)

25. Write $\begin{pmatrix} 13\\3 \end{pmatrix}$ as a linear combination of $\hat{i} = \begin{pmatrix} 1\\0 \end{pmatrix}$ and $\hat{j} = \begin{pmatrix} 0\\1 \end{pmatrix}$. $\boxed{13\hat{i} + 3\hat{j}}$ 26. Write $\begin{pmatrix} 13\\3 \end{pmatrix}$ as a linear combination of $\vec{a} = \begin{pmatrix} 1\\1 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 2\\0 \end{pmatrix}$. $\boxed{3\vec{a} + 5\vec{b}}$ 27. Why is it impossible to write $\begin{pmatrix} 13\\3 \end{pmatrix}$ as a linear combination of $\vec{a} = \begin{pmatrix} 1\\1 \end{pmatrix}$ and $\vec{c} = \begin{pmatrix} 3\\3 \end{pmatrix}$?

If $\begin{pmatrix} 13\\3 \end{pmatrix} = x \begin{pmatrix} 1\\1 \end{pmatrix} + y \begin{pmatrix} 3\\3 \end{pmatrix}$ then, from the first components (top rows) we need 13 = x + 3y and from the second components (bottom rows) we need 3 = x + 3y. It is impossible to for x + 3y to equal both 13 and 3.

28. For the vectors

$$\vec{v_1} = 2\hat{\imath} + 9\hat{\jmath} - 6\hat{k}, \qquad \vec{v_2} = 4\hat{\imath} + 2\hat{\jmath} - 6\hat{k}, \qquad \vec{v_3} = -8\hat{\jmath} + 3\hat{k}$$

either write $\vec{v_1}$ as a a linear combination of the other vectors or explain why it is not possible to do so. $\vec{v_1} = \frac{1}{2}\vec{v_2} + (-1)\vec{v_3}$