Linear Algebra, Winter 2022

List 1

Algebra and trig review, vector operations

1. Which of the following are true for all real values of the variables?
(a) $2 x=x+x$ True
(b) $2(x+y)=2 x+y$ False
(c) $(x-y)^{2}=x^{2}-2 x y+y^{2}$ True
(d) $(6+a) / 2=3+a / 2$ True
(e) $-(y+2)=-y+2$ False
(f) $-(a+b)^{2}=(-a+b)^{2}$ False
(g) $x^{3}+3 x=x+x$ False
(h) $k^{-2}=1 / k^{2}$ True
(i) $k^{-2}=-\sqrt{k}$ False
(j) $x^{a+2}=x^{a} \times x^{2}$ True
2. Compute the following values:
(a) $\cos (0) 1$
(b) $\sin (0) 0$
(c) $\cos \left(30^{\circ}\right) \sqrt{3} / 2$
(d) $\cos \left(45^{\circ}\right) 1 / \sqrt{2}$ or $\sqrt{2} / 2$
(e) $\cos \left(60^{\circ}\right) 1 / 2$
(f) $\cos (\pi / 3) \quad 1 / 2$ (same as previous)
(g) $\cos (\pi / 2) 0$
(h) $\sin (\pi / 2) 1$
(i) $\sin \left(180^{\circ}\right) 0$
(j) $\sin (4 \pi / 3)-\sqrt{3} / 2$
(k) $\arccos \left(\frac{1}{\sqrt{2}}\right) \pi / 4$ or 45°
(l) $\arccos \left(\frac{\sqrt{3}}{2}\right) \pi / 6$ or 30°
3. Find one value of θ for which both $-\sqrt{5}=\sqrt{20} \cos (\theta)$ and $\sqrt{15}=\sqrt{20} \sin (\theta)$. $\frac{2 \pi}{3}$ or $\frac{2 \pi}{3}+2 \pi n$ for any integer n
4. Simplify $\left(2 e^{7}\right)^{10} \cdot 1024 e^{70}$

In 2 D , the zero vector is $\overrightarrow{0}=[0,0]$, and the standard basis vectors are $\hat{\imath}=[1,0]$ and $\hat{\jmath}=[0,1]$. In 3 D , the zero vector is $\overrightarrow{0}=[0,0,0]$, and the standard basis vectors are $\hat{\imath}=[1,0,0]$ and $\hat{\jmath}=[0,1,0]$ and $\hat{k}=[0,0,1]$.

In any dimension,
magnitude (or length): $\quad\left|\left[a_{1}, \ldots, a_{n}\right]\right|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}$
scalar multiplication: $\quad s\left[a_{1}, \ldots, a_{n}\right]=\left[s a_{1}, \ldots, s a_{n}\right]$
vector addition: $\quad\left[a_{1}, \ldots, a_{n}\right]+\left[b_{1}, \ldots, b_{n}\right]=\left[a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right]$
vector subtraction: $\quad\left[a_{1}, \ldots, a_{n}\right]-\left[b_{1}, \ldots, b_{n}\right]=\left[a_{1}-b_{1}, \ldots, a_{n}-b_{n}\right]$
5. Calculate each of the following:
(a) $[3,2]+[7,1][10,3]$ or $\left[\begin{array}{c}10 \\ 3\end{array}\right]$ or $10 \hat{\imath}+3 \hat{\jmath}$
(b) $\langle 3,2\rangle+\langle 7,1\rangle$ same as part (a)
(c) $5[-4,3]=[-20,15]$
(d) $8\binom{3}{2}+\frac{1}{2}\binom{7}{1}=\binom{24}{16}+\binom{3.5}{0.5}=\binom{27.5}{16.5}$ or $\binom{55 / 2}{33 / 2}$
(e) $\frac{1}{20}[3,2]=\left[\frac{3}{20}, \frac{1}{10}\right]$
(f) $9[1,0]+2[0,1]=[9,2]$
(g) $9 \hat{\imath}+2 \hat{\jmath}($ in 2 D$)=[9,2]$
(h) $6 \hat{\imath}+\hat{\jmath}-2 \hat{k}=[6,1,-2]$
(i) $6 \hat{\jmath}-4(\hat{\jmath}-\hat{k})=[0,2,4]$
6. Draw the following vectors as arrows all on the same plane (one drawing, not three drawings):
(a) the vector $2 \hat{\imath}+\hat{\jmath}$ with its start at $(0,0)$.
(b) the vector $2 \hat{\imath}+\hat{\jmath}$ with its start at $(-3,0)$.
(c) the vector $2 \hat{\imath}+\hat{\jmath}$ with its start at $(-1,-1)$.

7. Draw the following vectors as arrows all on the same plane (one drawing, not four drawings):
(a) the vector $[2,1]$ with its start at $(0,0)$.
(b) the vector $4[2,1]$ with its start at $(0,0)$.
(c) the vector $1.5[2,1]$ with its start at $(0,0)$.
(d) the vector $(-1)[2,1]$ with its start at $(0,0)$.

8. Which of the following are scalar multiples of $[4,2,-6]$?
(a) $\left(\begin{array}{c}20 \\ 10 \\ -60\end{array}\right)$ No
(b) $[-12,-6,18]$ Yes
(c) $[0,0,0]$ Yes
(d) $\left(\begin{array}{c}0.4 \\ 0.2 \\ -0.6\end{array}\right) \mathrm{Yes}$
(e) $\left(\begin{array}{c}\sqrt{32} \\ \sqrt{8} \\ -\sqrt{72}\end{array}\right) \mathrm{Yes}$
(f) $[8,4,-10]$ No
9. Draw, on one picture, the vectors $7 \hat{\jmath}$ and $4 \hat{\imath}-4 \hat{\jmath}$ as arrows starting at $(0,0)$. What is the angle between these two vectors?

10. Let P be the point $(5,2)$ and let Q be the point $(1,9)$. Describe the vector $\left[\begin{array}{l}5 \\ 2\end{array}\right]-\left[\begin{array}{l}1 \\ 9\end{array}\right]$ in words, without doing any calculations. An arrow from Q to P
11. Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be as in the image below.

Write a true equation of the form $\ldots_{-}+{ }_{-}$using these vectors. $\vec{a}+\vec{c}=\vec{b}$ or $\vec{c}+\vec{a}=\vec{b}$.
12. Write two true equations of the form \qquad $-$ \qquad $=$ \qquad using vectors from Task 11. $\vec{b}-\vec{a}=\vec{c}$ and $\vec{b}-\vec{c}=\vec{a}$.
13. Calculate the following vectors or scalars:
(a) $|4 \hat{\imath}-4 \hat{\jmath}|=\sqrt{4^{2}+(-4)^{2}}=\sqrt{16+16}=\sqrt{32}$ or $4 \sqrt{2}$
(b) $|[0,7]|$
$=7$
(c) $\frac{[3,2]}{|[3,2]|}=\left[\frac{3}{\sqrt{13}}, \frac{2}{\sqrt{13}}\right]$
(d) $\left|\frac{[3,2]}{|[3,2]|}\right|=1$
14. Calculate each of the following. Each answer will be either a scalar formula or a vector formula involving t.
(a) $5\binom{3}{2}+t\binom{7}{1}=\binom{15+7 t}{10+t}$
(b) $t+\left|\left[\begin{array}{l}3 \\ 2\end{array}\right]\right|=t+\sqrt{13}$
(c) $|t[3,2]|=t \sqrt{13}$
(d) $|[1+t, 1-t]|^{2}=\left(\sqrt{(1+t)^{2}+(1-t)^{2}}\right)^{2}=(1+t)^{2}+(1-t)^{2}$ or $2+2 t^{2}$
15. A parallelogram has the vector $\vec{a}=[5,2]$ along one edge and $\vec{b}=[3,8]$ along another edge. Compute the lengths of the two diagonals of the parallelogram.

The longer diagonal (dashed) is $\vec{a}+\vec{b}$. Its length is

$$
\begin{aligned}
|\vec{a}+\vec{b}| & =|[5+3,2+8]|=|[8,10]| \\
& =\sqrt{8^{2}+10^{2}}=\sqrt{164}
\end{aligned}
$$

The shorter diagonal (dotted) is $\vec{a}-\vec{b}$. Its length is

$$
\begin{aligned}
|\vec{a}-\vec{b}| & =|[5-3,2-8]|=|[2,-6]| \\
& =\sqrt{2^{2}+(-6)^{2}}=\sqrt{40}
\end{aligned}
$$

16. Give a vector that is parallel to $\vec{v}=[8,-1,4]$ but has length 1 .

$$
\frac{[8,-1,4]}{|[8,-1,4]|}=\frac{[8,1,4]}{\sqrt{81}}=\left[\left[\frac{8}{9}, \frac{-1}{9}, \frac{4}{9}\right]\right.
$$

The dot product (also called scalar product) of \vec{u} and \vec{v} is written $\vec{u} \cdot \vec{v}$ and can be calculated as either

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{u} \cdot \vec{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} \\
& \stackrel{\rightharpoonup}{u} \cdot \vec{v}=|\vec{u}||\vec{v}| \cos (\text { angle between } \vec{u} \text { and } \stackrel{\rightharpoonup}{v}) .
\end{aligned}
$$

or
Two vectors are called orthogonal if their dot product is 0 .
17. Calculate $\binom{5}{7} \cdot\binom{-8}{1} . \quad 5(-8)+7(1)=-40+7=-33$
18. Calculate $(4 \hat{\imath}-4 \hat{\jmath}) \cdot(7 \hat{\jmath})$ in two ways:
(a) by using $(4)(0)+(-4)(7) \cdot 0-28=-28$
(b) by using $(4 \sqrt{2})(7) \cos \left(135^{\circ}\right)$. (See 13(a), 13(b), and 9.) $(4 \sqrt{2})(7)\left(\frac{-1}{\sqrt{2}}\right)=-28$
19. Find the angle between $\binom{-3}{\sqrt{3}}$ and $\binom{\sqrt{3}}{1} \cdot \frac{2}{3} \pi=120^{\circ}$
20. Let \vec{u}, \vec{v}, and \vec{w} be as in the image below.

(a) Is $\vec{u} \cdot \vec{v}$ positive, negative, or zero? positive
(b) Is $\vec{u} \cdot \vec{w}$ positive, negative, or zero? negative
(c) Is $\vec{v} \cdot \vec{w}$ positive, negative, or zero?
21. For each formula below, state whether it represents a scalar (number), a vector, or "nonsense" (meaning it is not a legal operation; for example, $\vec{v}+5$ is nonsense.
(a) $\vec{a}+\vec{b}$ vector
(i) $\vec{c}+s \vec{b}$ vector
(p) $\vec{w} \cdot[s, t]$ scalar
(b) $\vec{u} \cdot \vec{v}$ scalar
(j) $t(\vec{a}+\vec{b})-\vec{c}$ vector
(q) $|\vec{u}|$ scalar
(c) $\vec{a} \vec{b}$ nonsense
(k) $(\vec{a} \cdot \vec{b}) \vec{c}$ vector
(r) $\left|\left[9,2, \frac{1}{2}\right]\right|$ scalar
(d) $t \vec{a}$ vector
(l) $\overrightarrow{0}-\vec{a}$ vector
(s) $|\vec{w}| \vec{v}$ vector
(e) $t+\vec{v}$ nonsense
(m) $\overrightarrow{0} \cdot \vec{w}$ scalar
(t) $|\vec{a}|+(\vec{b} \cdot \vec{c})$ scalar
(f) $(t+s) \vec{u}$ vector
(g) \vec{n} / s vector
(n) $\binom{4}{2} \cdot\binom{1}{8}$ scalar
(u) $|\vec{a}|(\vec{b} \cdot \vec{c})$ scalar
(v) $(\vec{a})^{2}$ nonsense
(h) $\vec{a}-s$ nonsense
(o) $[4,2] \cdot[s, t]$ scalar
(w) $|\vec{a}|^{2}$ scalar
22. State whether each pair of vectors below is parallel, perpendicular, or neither.
(a) $\binom{5}{2}$ and $\binom{-2}{7}$ neither
(b) $\binom{5}{2}$ and $\binom{1}{0.4}$ parallel
(c) $2 \hat{\imath}-8 \hat{\jmath}$ and $-8 \hat{\imath}+2 \hat{\jmath}$ neither
(d) $\left(\begin{array}{c}10 \\ -6 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right)$ perpendicular
(e) $9 \hat{\imath}+11 \hat{\jmath}-29 \hat{k}$ and $2 \hat{\imath}+j+\hat{k}$ perpendicular
(f) $32 \hat{\imath}+180 \hat{\jmath}$ and $32 \hat{\imath}+7 \hat{k}$ neither
23. Give an example of a vector that is perpendicular to $\vec{v}=\hat{\imath}+9 \hat{\jmath}+4 \hat{k}$.

There are many, many correct answers. One correct answer is $[4,0,-1]$.
24. Knowing that

$$
\cos \left(19.5^{\circ}\right) \approx \frac{33}{35}, \quad \cos \left(25.2^{\circ}\right) \approx \frac{19}{21}, \quad \cos \left(31^{\circ}\right) \approx \frac{6}{7}, \quad \cos \left(62.96^{\circ}\right) \approx \frac{15}{33},
$$

find the acute angle between $[6,3,6]$ and $[6,9,18]$.
We know

$$
[6,3,6] \cdot[6,9,18]=6(6)+3(9)+6(18)=171
$$

and also

$$
[6,3,6] \cdot[6,9,18]=|[6,3,6]||[6,9,18]| \cos \theta=(9)(21) \cos \theta=189 \cos \theta
$$

so it must be that

$$
171=189 \cos \theta \quad \Rightarrow \quad \cos \theta=\frac{171}{189}=\frac{19}{21}
$$

and therefore $\theta=25.2^{\circ}$.
A linear combination of a collection of vectors is a sum (+) of scalar multiples of those vectors. (A linear combination of one vector is simply a scalar multiple of that one vector.)
25. Write $\binom{13}{3}$ as a linear combination of $\hat{\imath}=\binom{1}{0}$ and $\hat{\jmath}=\binom{0}{1} \cdot 13 \hat{\imath}+3 \hat{\jmath}$
26. Write $\binom{13}{3}$ as a linear combination of $\vec{a}=\binom{1}{1}$ and $\vec{b}=\binom{2}{0} \cdot 3 \vec{a}+5 \vec{b}$
27. Why is it impossible to write $\binom{13}{3}$ as a linear combination of $\vec{a}=\binom{1}{1}$ and $\vec{c}=\binom{3}{3}$?
If $\binom{13}{3}=x\binom{1}{1}+y\binom{3}{3}$ then, from the first components (top rows) we need $13=x+3 y$ and from the second components (bottom rows) we need $3=x+3 y$. It is impossible to for $x+3 y$ to equal both 13 and 3 .
28. For the vectors

$$
\overrightarrow{v_{1}}=2 \hat{\imath}+9 \hat{\jmath}-6 \hat{k}, \quad \overrightarrow{v_{2}}=4 \hat{\imath}+2 \hat{\jmath}-6 \hat{k}, \quad \overrightarrow{v_{3}}=-8 \hat{\jmath}+3 \hat{k},
$$

either write $\overrightarrow{v_{1}}$ as a a linear combination of the other vectors or explain why it is not possible to do so. $\overrightarrow{v_{1}}=\frac{1}{2} \overrightarrow{v_{2}}+(-1) \overrightarrow{v_{3}}$

